
MATH2050C Selected Solution to Assignment 12

Section 5.4 no. 3, 4, 6-12.

(3) (a) f(x) = x2 is not uniformly continuous on [0,∞). Pick an = n and bn = n + 1/n. Then
|an − bn| = 1/n→ 0 but |f(an)− f(bn)| = 2 + 1/n2 > 2.

Note. In general, any polynomial of degree ≥ 2 is not uniformly on any unbounded interval. (Of
course, it is uc on every bounded interval.)

(b) g(x) = sin 1/x on (0,∞). Pick an = 1/(2nπ) and bn = 1/(2n + 1/2)π. Then |an − bn| → 0
but | sin 1/an − sin 1/bn| = |0− 1| = 1 for all n.

(4) Let us prove a more general result. Let f be a continuous function on [0,∞) which satisfies
limx→∞ f(x) = 0. Then f is uniformly continuous on [0,∞). For, given ε > 0, there is some
K > 1 such that |f(x)| < ε/2 for all x ∈ [K,∞). On the other hand, as f is continuous on
[0,K + 2], it is uniformly continuous there. We can find some δ < 1 depending only on ε such
that |f(x)− f(y)| < ε whenever |x− y| < δ, x, y ∈ [0,K + 1]. Now, if x0 ∈ [0,K], |x− x0| < δ
implies x ∈ [0,K+ 1], so |f(x)−f(x0)| < ε. If x0 ∈ [K+ 1,∞), for x satisfying |x−x0| < δ < 1,
x ∈ [K,∞), hence |f(x)− f(x0)| ≤ |f(x)|+ |f(x0)| < ε/2 + ε/2 = ε, done.

(6) Let f be bounded by M and g by K. Use

|f(x)g(x)−f(y)g(y)| = |(f(x)−f(y))g(x)+f(y)(g(x)−g(y))| ≤ K|f(x)−f(y)|+M |g(x)−g(y)| .

(7) The functions x and sinx are uniformly continuous on (−∞,∞), but its product h(x) =
x sinx is not. Let an = 2nπ and bn = (2n+ 1/n)π so |an − bn| → 0. On the other hand,

sin

(
2nπ +

1

n
π

)
π/n

=
sin

π

n
π/n

→ 1 , as n→∞ .

Thus,
|bn sin bn − an sin an| = |bn sin bn| → 2π2 , as n→∞.

(8) Same as the proof of the composite of two continuous functions is continuous, just noting
that δ depends on ε only.

(10) If not, there is a sequence {xn} in A such that |f(xn)| ≥ n. As A is bounded, by Bolzano-
Weierstrass, by passing to a subsequence if nec, we may assume xn → x∗ for some x∗ (not nec
in A). Then {xn} is a Cauchy sequence. Now, by assumption f is uniformly continuous, for
ε = 1, there is some δ such that |f(x) − f(y)| < 1 whenever |x − y| < δ. As {xn} is a Cauchy
sequence, |xn − xm| < δ for all n,m ≥ n0. But then

n ≤ |f(xn)| ≤ |f(xn)− f(xn0)|+ |f(xn0)| ≤ 1 + |f(xn0)| ,

which is impossible for large n. Hence, f must be bounded.

(15) (c) An example is the linear function f(x) = x. Clearly it is Lipschitz continuous, but x2

is not.
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Supplementary Exercise

1. Let f be continuous on (a, b), −∞ ≤ a < b ≤ ∞. Show that it is uniformly continuous on
(a, b) if it is uniformly continuous on (a, c] and [c, b) for some c ∈ (a, b).

Solution. For ε > 0, we fix some δ such that |f(x)−f(y)| < ε/2 for x, y ∈ (a, c], |x−y| < δ,.
Also, we fix δ′ that |f(x)−f(y)| < ε/2 for x, y ∈ [c, b), |x−y| < δ′. We let δ1 = min{δ, δ′}.
Let x ∈ (a, c] and consider y ∈ (x − δ1, x + δ1). If y also belongs to (a, c], using δ1 ≤ δ,
we have |f(x) − f(y)| < ε/2 < ε. If y ∈ (c, b), observe that |x − c|, |c − y| < δ1 and so
|f(x)−f(y)| ≤ |f(x)−f(c)|+ |f(c)−f(y)| < ε/2+ε/2 = ε. Similarly, we handle x ∈ [c, b).

2. Consider h(x) = 1/x. Show that it is continuous on (0, 1] by determining the best δ as a
function of ε and x0. And then using it to show h is not uniformly continuous on (0, 1]
but uniformly continuous on [a, 1] for any fixed a ∈ (0, 1). (This was done in class.)

3. Optional. Consider g(x) = x−2. Show that it is continuous on (0,∞) by determining the
best δ as a function of ε and x0. And then using it to show g is not uniformly continuous
on (0,∞) but uniformly continuous on [a,∞) for any fixed a > 0.

Solution. Let x0 ∈ (0,∞). We determine x1 < x0 < x2 so that [x1, x2] is mapped to
[g(x0) − ε, g(x0) + ε]. Since g is strictly decreasing, we know that g(x0) − ε = g(x2) and
g(x0) + ε = g(x1). By solving the equations we get

x1 =
x0√

1 + εx20
, x2 =

x0√
1− εx20

.

From x2 − x0 < x0 − x1 we find that the best δ is given by x0 − x1:

δ(ε, x0) = x0 − x1 =
εx30√

1 + εx20 (1 +
√

1 + εx20)
.

As x0 → 0, δ(x0, ε)→ 0. Therefore, g is not uniformly continuous on (0,∞).

Next, we are going to show that g is uniformly continuous on [a, 1] and [1,∞). By the
previous problem, it is uniformly continuous on [a,∞). For x0 ∈ [a, 1], we have

δ(x0, ε) ≥
εa3√

1 + ε(1 +
√

1 + ε)
≡ δ1(ε) .

It follows that |g(x)− g(x0)| < ε on [a, 1] whenever |x− x0| < δ1. Next, for x0 ∈ [1,∞),

δ(x0, ε) =
εx0√

x−20 + ε

(
x−10 +

√
x−20 + ε

)
≥ ε√

1 + ε1/2(1 +
√

1 + ε)

≡ δ2(ε) ,

Note. Not insisting on using the ε-δ thing, it suffices to consider an = 1/n, bn = 2/n→ 0
but g(1/n)−g(2/n) = 3n2/4→∞ as n→∞. It shows that g is not uniformly continuous
in any interval of the form (0, a), a > 0.
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4. Optional. Let E be a non-empty set in R. Define the distance function ρ(x) = inf{|z−x| :
z ∈ E}. Show that

|ρ(x)− ρ(y)| ≤ |x− y|.

Solution. For all z ∈ E, ρ(x) ≤ |z − x| ≤ |z − y| + |y − x| . Taking infimum over z ∈ E
on the right hand side, we get

ρ(x) ≤ ρ(y) + |y − x| ,

and the result holds in view of the symmetry between x and y.

Note. When E is a point set {x0}, the distance function ρ(x) = |x−x0|. It is differentiable
except at {x0}. In general, the distance function can be defined for any subset in Rn in
a similar way. It turns out the same proof establishes its Lipschitz continuity. It shows
Lipschitz continuity is a fundamental concept in analysis. A deep theorem of Radamarcher
asserts that every distance function is differentiable at most points.


